Skip to content

Example 1: Assignment Problem

Problem Description

Several companies have their own capital, liabilities, and profits.

CAPITALLIABILITIESPROFIT
Co. A3.481.285400
Co. B5.622.532300
Co. C7.331.024600
Co. D6.273.553300
Co. E2.140.53980

Select a subset of companies to maximize total profit, while satisfying:

  1. Total capital is greater than or equal to 10
  2. Total liabilities is less than or equal to 5

Mathematical Model

Variables

xc :to select company c

Intermediate Expressions

1. Total Capital

Capital=cCCapitalcxc

2. Total Liabilities

Liability=cCLiabilitycxc

3. Total Profit

Profit=cCProfitcxc

Objective Function

1. Maximize Total Profit

maxProfit

Constraints

1. Minimum Capital Limit

s.t.CapitalCapitalMin

2. Maximum Liability Limit

s.t.LiabilityLiabilityMax

Expected Result

Optimal selection: companies A, B and C 。

Code Implementation

kotlin
import fuookami.ospf.kotlin.utils.math.*
import fuookami.ospf.kotlin.utils.concept.*
import fuookami.ospf.kotlin.utils.functional.*
import fuookami.ospf.kotlin.utils.multi_array.*
import fuookami.ospf.kotlin.core.frontend.variable.*
import fuookami.ospf.kotlin.core.frontend.expression.monomial.*
import fuookami.ospf.kotlin.core.frontend.expression.polynomial.*
import fuookami.ospf.kotlin.core.frontend.expression.symbol.*
import fuookami.ospf.kotlin.core.frontend.inequality.*
import fuookami.ospf.kotlin.core.frontend.model.mechanism.*
import fuookami.ospf.kotlin.core.backend.plugins.scip.*

data class Company(
    val capital: Flt64,
    val liability: Flt64,
    val profit: Flt64
) : AutoIndexed(Company::class)

val companies: List<Company> = ... // company data
val minCapital = Flt64(10.0)
val maxLiability = Flt64(5.0)

// create a model instance
val metaModel = LinearMetaModel("demo1")

// define variables
val x = BinVariable1("x", Shape1(companies.size))
for (c in companies) {
    x[c].name = "${x.name}_${c.index}"
}
metaModel.add(x)

// define intermediate expressions
val capital = LinearExpressionSymbol(
    sum(companies) { it.capital * x[it] }, 
    "capital"
)
metaModel.add(capital)

val liability = LinearExpressionSymbol(
    sum(companies) { it.liability * x[it] }, 
    "liability"
)
metaModel.add(liability)

val profit = LinearExpressionSymbol(
    sum(companies) { it.profit * x[it] }, 
    "profit"
)
metaModel.add(profit)

// define objective function
metaModel.maximize(profit)

// define constraints
metaModel.addConstraint(capital geq minCapital)
metaModel.addConstraint(liability leq maxLiability)

// solve the model
val solver = ScipLinearSolver()
when (val ret = solver(metaModel)) {
    is Ok -> {
        metaModel.tokens.setSolution(ret.value.solution)
    }

    is Failed -> {}
}

// parse results
val solution = ArrayList<Company>()
for (token in metaModel.tokens.tokens) {
    if (token.result!! eq Flt64.one && token.variable.belongsTo(x)) {
        solution.add(companies[token.variable.index])
    }
}

For the complete implementation, please refer to: